Salviamo i maghi!

Conteggi, probabilità, invarianti, logica, matematizzazione, ...
Rispondi
Avatar utente
Fedecart
Messaggi: 522
Iscritto il: 09 mar 2008, 22:49
Località: Padova

Salviamo i maghi!

Messaggio da Fedecart »

Spero di ricordarmelo bene perchè non ho il testo sotto gli occhi. Dunque, ogni anno il re di una città chiama i suoi 100 maghi a rapporto e li mette in fila indiana. Ogni mago è in grado di vedere chi sta davanti a lui. Ogni mago ha un cappello colorato in testa. I colori sono rosso, blu, verde e giallo. La distribuzione rispetto alla fila ed il numero dei diversi cappelli colorati e casuale. Il re interroga i maghi, chiedendo quale sia il colore del cappello che indossa. Chiaramente i maghi non conoscono il colore del proprio cappello. Finita l'interrogazione (nella quale però i maghi decidono chi parla per primo o no, e possono anche parlare in più d'uno alla volta) il re decapita chiunque abbia dichiarato un colore diverso dal suo.
Quale strategia conviene adottare ai maghi perchè il più possibile di loro si salvi? Quanti si salvano?

E' un cesenatico.
Io sono riuscito a salvarne la metà certa più un eventuale numero di altri, numero però che non so calcolare matematicamente. Voi quanti ne salvate? Fatemi sapere!
bestiedda
Messaggi: 213
Iscritto il: 15 nov 2007, 20:20

Messaggio da bestiedda »

cosa vuol dire che parlano in più d'uno alla volta?
marco
Avatar utente
gian92
Messaggi: 558
Iscritto il: 12 nov 2007, 13:11
Località: roma

Messaggio da gian92 »

qui avevo dato una soluzione secondo cui se ne salvavano parecchi!!
ciao :D
fph
Site Admin
Messaggi: 3993
Iscritto il: 01 gen 1970, 01:00
Località: in giro
Contatta:

Messaggio da fph »

Domanda: i maghi possono girarsi? Se lo possono fare, la situazione migliora? Almeno per n=3, la risposta dovrebbe essere si' (come?)
--federico
[tex]\frac1{\sqrt2}\bigl(\left|\text{loves me}\right\rangle+\left|\text{loves me not}\right\rangle\bigr)[/tex]
Avatar utente
gian92
Messaggi: 558
Iscritto il: 12 nov 2007, 13:11
Località: roma

Messaggio da gian92 »

fph ha scritto:Domanda: i maghi possono girarsi? Se lo possono fare, la situazione migliora? Almeno per n=3, la risposta dovrebbe essere si' (come?)
davvero se ne possono salvare più di 99?
Ultima modifica di gian92 il 16 ott 2008, 15:24, modificato 1 volta in totale.
Avatar utente
Fedecart
Messaggi: 522
Iscritto il: 09 mar 2008, 22:49
Località: Padova

Messaggio da Fedecart »

fph ha scritto:Domanda: i maghi possono girarsi? Se lo possono fare, la situazione migliora? Almeno per n=3, la risposta dovrebbe essere si' (come?)
I maghi non possono girarsi.
Per parlare più d'uno alla volta vuol dire ad esempio che i primi 5 dicono contemporaneamente il colore, poi parlano altri 5 assieme, poi altri 3... Insomma, non devono parlare uno alla volta... Ma il re non si confonde, anche se parlano tutti e 100 assieme, ricorda cos'ha detto ognuno
Avatar utente
gian92
Messaggi: 558
Iscritto il: 12 nov 2007, 13:11
Località: roma

Messaggio da gian92 »

scusate ma la mia soluzione non vi piace? :D
Avatar utente
SkZ
Messaggi: 3333
Iscritto il: 03 ago 2006, 21:02
Località: Concepcion, Chile
Contatta:

Messaggio da SkZ »

molto bella e pratica, considerato che il conto avviene praticamente in contemporanea.
Certo che devono avere un po' di tempo per farlo. So che c'era una versione in cui stavano ad occhi chiusi, li aprivano e dovevano dire subito il colore. Ma c'e' la sol anche per quello in quel thread

PS: ma avete gia' fatto fuori tutti i nani? Non dovevate salvarli?
impara il [tex]~\LaTeX[/tex] e mettilo da par[tex]\TeX~[/tex]

Software is like sex: it's better when it's free (Linus T.)
membro: Club Nostalgici
Non essere egoista, dona anche tu! http://fpv.hacknight.org/a8.php
Avatar utente
gian92
Messaggi: 558
Iscritto il: 12 nov 2007, 13:11
Località: roma

Messaggio da gian92 »

SkZ ha scritto:molto bella e pratica, considerato che il conto avviene praticamente in contemporanea.
Certo che devono avere un po' di tempo per farlo. So che c'era una versione in cui stavano ad occhi chiusi, li aprivano e dovevano dire subito il colore. Ma c'e' la sol anche per quello in quel thread

PS: ma avete gia' fatto fuori tutti i nani? Non dovevate salvarli?
no perchè mi sembrava non l'avessero vista :D
Ultima modifica di gian92 il 16 ott 2008, 20:27, modificato 1 volta in totale.
Avatar utente
exodd
Messaggi: 728
Iscritto il: 09 mar 2007, 19:46
Località: sulle pendici della provincia più alta d'europa

Messaggio da exodd »

forse l'ho incominciato proprio io questo indovinello :wink:

c'è un metodo (senza barare) che ne può salvare 99 e 1/3 :shock:
Tutto è possibile: L'impossibile richiede solo più tempo
julio14 ha scritto: jordan è in realtà l'origine e il fine di tutti i mali in $ \mathbb{N} $
EvaristeG ha scritto:Quindi la logica non ci capisce un'allegra e convergente mazza.
ispiratore del BTA

in geometry, angles are angels

"la traslazione non è altro che un'omotetia di centro infinito e k... molto strano"
Avatar utente
gian92
Messaggi: 558
Iscritto il: 12 nov 2007, 13:11
Località: roma

Messaggio da gian92 »

exodd ha scritto:forse l'ho incominciato proprio io questo indovinello :wink:

c'è un metodo (senza barare) che ne può salvare 99 e 1/3 :shock:
è quello che ho postato io?
99 e un terzo vuol dire 99 sicuri e l'ultimo che ha un terzo di probabilità di salvarsi?
Avatar utente
exodd
Messaggi: 728
Iscritto il: 09 mar 2007, 19:46
Località: sulle pendici della provincia più alta d'europa

Messaggio da exodd »

sisi non avevo visto il link
Tutto è possibile: L'impossibile richiede solo più tempo
julio14 ha scritto: jordan è in realtà l'origine e il fine di tutti i mali in $ \mathbb{N} $
EvaristeG ha scritto:Quindi la logica non ci capisce un'allegra e convergente mazza.
ispiratore del BTA

in geometry, angles are angels

"la traslazione non è altro che un'omotetia di centro infinito e k... molto strano"
Rispondi