Trasmissione del calore in coordinate cilindriche.

Analisi, algebra lineare, topologia, gruppi, anelli, campi, ...
Rispondi
Starflex
Messaggi: 3
Iscritto il: 29 mar 2008, 09:34

Trasmissione del calore in coordinate cilindriche.

Messaggio da Starflex »

Un saluto a tutti!
Premessa: è un problema che riguarda la mia tesi di laurea, che prevede la soluzione di un problema di trasmissione del calore in coordinate cilindriche.
Ho letto le regole per postare i messaggi, e sto in mezzo tra l'essere bannato e l'essere aiutato..spero nella seconda ipotesi!!
Vi riassumo il problema annoso: ripeto, abbiamo un problema di trasmissione del calore da risolvere in coordinate cilindriche.

Il "generatore" di calore è una barra cilindrica che si puo' assumere
infinitamente lunga (L >> r), inserita in un corpo omogeneo.
Nella realtà di tutti i giorni, sono degli scambiatori di calore (sonde
geotermiche) inseriti nel terreno.
Si conoscono le condizioni iniziali (sistema a riposo), in cui la
temperatura è costante per qualsiasi valore della distanza radiale ed è pari
a 290 K.
Le condizioni al contorno sono T = 305K per r = 0 e t>0 (si assume il
cilindro con raggio infinitesimo) e T = 290K ad una certa distanza
opportuna..diciamo, 20 metri dall'asse del cilindro, e sempre t > 0.
Da quel che ho capito, la soluzione va cercata o con le funzioni di Bessel,
o con un qualche sviluppo in serie.
Il problema è che la soluzione non l'ho trovata da nessuna parte, e non ho
basi matematiche sufficienti a risolvere il problema.

Qualcuno di voi ha qualche testo in cui sia trattato, o ha voglia di
cimentarsi?
E' una parte della mia tesi di laurea, e non so veramente come uscirne...e il tempo stringe orrendamente...
Qui trovate un sunto del problema:

www.scooterclub-nolimits.it/cilindrico.doc

Grazie mille!
iactor
Messaggi: 53
Iscritto il: 25 apr 2007, 16:49

Messaggio da iactor »

Ti interessa così tanto il transitorio? (la soluzione è un po' complicata e per come la metti tu nelle condizioni iniziali c'è un gradino (che ovviamente non ha nulla di fisico), in ogni caso nei processi di diffusione dovrebbe esserci un radice di t da qualche parte.
La soluzione di regime è banale, si tratta dell'equazione di laplace per il cilindro indefinito (è un logaritmo di r) che si trova spesso in elettrostatica. Devi aver sbagliato qualcosa mi sembra perchè la tua soluzione numerica tenda ad una retta con il passare del tempo (che ovviamente non va bene la tua sonda per quanto calda avrà un'influenza trascurabile a distanza abbastanza grande)
Anche la soluzione logaritmica non va bene (perchè non va bene l'approssimazione a barra infinitamente lunga) lontano dalla sbarra perchè anche quella diverge.
Lontano si potrebbe usare quella che in elettrostatica è l'approssimazione a monopolo, dipolo, quadrupolo e così via (in pratica serie di taylor).
In ogni caso dovresti chiarire meglio cosa ti serve dato che la soluzione esatta al tuo problema non credo possa essere espressa analiticamente (e comunque è raro che le soluzioni esatte siano poi così interessanti) in modo da capire quali approssimazioni conviene fare.
Per concludere dato che mi pare di capire che sei un ingegnere non è meglio che fai una simulazuione numerica fatta bene?
Se hai ancora bisogno e hai molta fretta parliamone pure per mp
ciao
Starflex
Messaggi: 3
Iscritto il: 29 mar 2008, 09:34

Messaggio da Starflex »

Ti ringrazio per la risposta!
Non capisco cosa intendi, pero', quando dici che la soluzione deve tendere ad una retta...che è proprio ciò che accade.
Se guardi il grafico, noti che al crescere della distanza radiale, la stessa temepratura viene raggiunra in tempi via via sempre più lunghi (lasciando perdere le immediate vicinanze del cilindro). In ogni caso, le curve sono un po' delle "logaritmiche", sempre decrescenti, che ad una certa distanza raggiungono il valore della temperatura indisturbata.
Ovviamente, come dici tu, per quanto calda, la sonda ha una influenza trascurabile ad una certa distanza...diciamo, già dai 10 metri in poi di distanza radiale.
Abbiamo gia due simulazioni, una fatta con Matlab e una fatta con Ansys, e coincidono, a meno di errori di 0,05K (molto bassi, quindi).
Ci sarebbe interessata la trattazione analitica, aprossimata, nessun problema se parte dall'istante t=1 o t=10, tanto t lo si fa variare fino a 100'000 (secondi), proprio per fare un confronto....
iactor
Messaggi: 53
Iscritto il: 25 apr 2007, 16:49

Messaggio da iactor »

scusa ho scritto tenda ma intendevo tende poi correggo

Infatti quello che dicevo è che nella tua simulazione accade che il tutto tende ad una retta ma in realtà ciò non dovrebbe accadere, sicuro che non ci siano errori nella simulazione?
Attento poi una curva logaritmica non tende a nessun valore finito.
Starflex
Messaggi: 3
Iscritto il: 29 mar 2008, 09:34

Messaggio da Starflex »

Si, tende tutto ad una retta..è corretto che sia così.
La capacità termica del terreno circostante è infatti molto grande, e il volume del terreno interessato dallo scambio termico cresce man mano che ci si allontana, fino ad avere una influenza nulla, per certe distanze. Anche rilevamento "in loco", ove le sonde sono installate, hanno dimostrato questo comportamento, per periodi molto lunghi (15 anni), con influenza, a partire dai 12 metri di distanza, praticamente nulla (la temepratura dai 12 metri in poi rimane costante, pari a quella del terreno indisturbato).
L'uscita della logaritmica è un mio errore...
Rispondi