Dimostrare con un controesempio che la coppia (xn), (yn) di successioni di Cauchy
corrispondente ad una sezione (X, Y ) in base alla Proposizione 1.6 non è unica.
Proposizione 1.6
Data una sezione (X, Y ) in Q, esistono due successioni (xn) e (yn) diCauchy tali che, per ogni n appartenente ad N, xn appartenente ad X, yn appartenente ad Y , e yn − xn =1/n
Sulle successioni di Cauchy
- Nonno Bassotto
- Site Admin
- Messaggi: 970
- Iscritto il: 14 mag 2006, 17:51
- Località: Paris
- Contatta:
Caro Jean-Paul, ti consiglio di leggere le regole di utilizzo del forum che puoi trovare qui e le regole della sezione Matematica non elementare che puoi trovare qui. Questo forum è dedicato alle Olimpiadi di Matematica, non alla matematica in generale o ad aiutare studenti in difficoltà.
Puoi provare a cercare aiuto su altri siti come questo.
Buona Navigazione
Puoi provare a cercare aiuto su altri siti come questo.
Buona Navigazione
The best argument against democracy is a five-minute conversation with the average voter. - Winston Churchill