esatto: a causa della frizione che rallenta il moto.
Il pendolo non e' esattamente periodico, dato che l'attrito lo rallenta costantemente. Mentre l'aumento di ampiezza accelera il pendolo nella fase 'discendente" e lo decelera nella fase "ascendente" (con contributo netto 0), l'attrito decelera sempre.
Ma il rallentamento e' lieve e per "poche" oscillazioni rimane abbastanza costante entro gli errori di misura.
Piu' oscillazioni migliorano l'errore di misura sulla singola oscilalzione, ma tante oscillazioni comportano che l'approssimazione di periodicita' salta.
pendolo semplice
$ $\ddot{x}+\omega^2 x=0 $
pendolo con attrito
$ $\ddot{x}+\eta \dot{x}+\omega_0^2 x=0=(\partial -a)(\partial-b)x $
ps:

mi stanno venendo dei dubbi sulla riduzione del periodo. di certo e' che dopo un tot si ferma ergo non puoi continuare a misurare e misuri meglio quando il pendolo attraverso il punto piu' basso con velocita'