Bisettrice particolare
Bisettrice particolare
Dimostrare che se l'ampiezza di un angolo interno di un triangolo è di $120°$, allora la sua bisettrice è parallela alla retta di Eulero
"Bene, ora dobbiamo massimizzare [tex]\dfrac{x}{(x+100)^2}[/tex]: come possiamo farlo senza le derivate? Beh insomma, in zero fa zero... a $+\infty$ tende a zero... e il massimo? Potrebbe essere, che so, in $10^{24}$? Chiaramente no... E in $10^{-3}$? Nemmeno... Insomma, nella frazione c'è solo il numero $100$, quindi dove volete che sia il massimo se non in $x=100$..?" (da leggere con risatine perfide e irrisorie in corrispondenza dei puntini di sospensione)
Maledetti fisici! (cit.)
Maledetti fisici! (cit.)
Re: Bisettrice particolare
Se $\angle A=120°$ chiamo L il punto medio dell'arco BC non contenente A. Chiaramente L sta sulla bisettrice e inoltre $LO=2OM_A$ ($BOC$ isoscele con un angolo di 120°).
In generale vale $AH=2OM_A$ (si fa in trigonometria o con la solita omotetia $(G, -\frac{1}{2})$, quindi in questo caso $LO=AH$, quindi (siccome la retta $LO$ è parallela ad $AH$) $HALO$ è un parallelogramma che è la tesi.
In generale vale $AH=2OM_A$ (si fa in trigonometria o con la solita omotetia $(G, -\frac{1}{2})$, quindi in questo caso $LO=AH$, quindi (siccome la retta $LO$ è parallela ad $AH$) $HALO$ è un parallelogramma che è la tesi.
Re: Bisettrice particolare
Cos'è $H$?
"Bene, ora dobbiamo massimizzare [tex]\dfrac{x}{(x+100)^2}[/tex]: come possiamo farlo senza le derivate? Beh insomma, in zero fa zero... a $+\infty$ tende a zero... e il massimo? Potrebbe essere, che so, in $10^{24}$? Chiaramente no... E in $10^{-3}$? Nemmeno... Insomma, nella frazione c'è solo il numero $100$, quindi dove volete che sia il massimo se non in $x=100$..?" (da leggere con risatine perfide e irrisorie in corrispondenza dei puntini di sospensione)
Maledetti fisici! (cit.)
Maledetti fisici! (cit.)
Re: Bisettrice particolare
E' l'ortocentro di ABC
Re: Bisettrice particolare
Ah ok, in effetti mi sembrava un po' strano perché credevo che fosse il piede dell'altezza... comunque potevo arrivarci..! 

"Bene, ora dobbiamo massimizzare [tex]\dfrac{x}{(x+100)^2}[/tex]: come possiamo farlo senza le derivate? Beh insomma, in zero fa zero... a $+\infty$ tende a zero... e il massimo? Potrebbe essere, che so, in $10^{24}$? Chiaramente no... E in $10^{-3}$? Nemmeno... Insomma, nella frazione c'è solo il numero $100$, quindi dove volete che sia il massimo se non in $x=100$..?" (da leggere con risatine perfide e irrisorie in corrispondenza dei puntini di sospensione)
Maledetti fisici! (cit.)
Maledetti fisici! (cit.)
Re: Bisettrice particolare
E se invece l'angolo è di 60°, com'è la sua bisettrice rispetto alla retta di Eulero?
Re: Bisettrice particolare
INCREDIBILE MAFIA!
TORINESI BECCATI!!!!
TORINESI BECCATI!!!!
...tristezza ed ottimismo... ed ironia...
Io ti racconto lo squallore di una vita vissuta a ore di gente che non sa più far l'amore...
"Allora impara a fare meno il ruffiano. Io non lo faccio mai e guarda come sono ganzo" Tibor Gallai
Io ti racconto lo squallore di una vita vissuta a ore di gente che non sa più far l'amore...
"Allora impara a fare meno il ruffiano. Io non lo faccio mai e guarda come sono ganzo" Tibor Gallai
Re: Bisettrice particolare
Lol... io dicevo di averlo già visto da qualche parte...
"Il bon ton è la grazia del saper vivere, la leggerezza dell' esistere." (Lina Sotis, perfidamente elegante)
Re: Bisettrice particolare
???dario2994 ha scritto:INCREDIBILE MAFIA!
TORINESI BECCATI!!!!

"Bene, ora dobbiamo massimizzare [tex]\dfrac{x}{(x+100)^2}[/tex]: come possiamo farlo senza le derivate? Beh insomma, in zero fa zero... a $+\infty$ tende a zero... e il massimo? Potrebbe essere, che so, in $10^{24}$? Chiaramente no... E in $10^{-3}$? Nemmeno... Insomma, nella frazione c'è solo il numero $100$, quindi dove volete che sia il massimo se non in $x=100$..?" (da leggere con risatine perfide e irrisorie in corrispondenza dei puntini di sospensione)
Maledetti fisici! (cit.)
Maledetti fisici! (cit.)
Re: Bisettrice particolare
Qui c'è solo una freccia, ma dopotutto pure su AoPS è passato una camionata di volte 

"Quello lì pubblica come un riccio!" (G.)
"Questo puoi mostrarlo o assumendo abc o assumendo GRH+BSD, vedi tu cos'è meno peggio..." (cit.)
"Questo puoi mostrarlo o assumendo abc o assumendo GRH+BSD, vedi tu cos'è meno peggio..." (cit.)
Re: Bisettrice particolare
Oddio!
PS: Glaudino ma da dov'è che hai capito che è un complotto torinese? Ah sì, Forlì è in Piemonte scusa
PS: Glaudino ma da dov'è che hai capito che è un complotto torinese? Ah sì, Forlì è in Piemonte scusa

- Troleito br00tal
- Messaggi: 683
- Iscritto il: 16 mag 2012, 22:25