Triangoli pedali for dummies
Triangoli pedali for dummies
Dato un triangolo $ABC$, sia $A_1B_1C_1$ il triangolo pedale di un punto $P$ interno ad $ABC$ ($A_1\in BC$ e cicliche). Sia ora $a$ la perpendicolare a $B_1C_1$ condotta da $A$, e analogamente costruiamo $b$ ($B$ e $C_1A_1$) e $c$ ($C$ e $A_1B_1$). Dimostrare che $a,b,c$ concorrono.
			
			
									
						
							"Una funzione generatrice è una corda da bucato usata per appendervi una successione numerica per metterla in mostra" (Herbert Wilf)
"La matematica è la regina delle scienze e la teoria dei numeri è la regina della matematica" (Carl Friedrich Gauss)
Sensibilizzazione all'uso delle potenti Coordinate Cartesiane, possano seppellire per sempre le orride baricentriche corruttrici dei giovani: cur enim scribere tre numeri quando se ne abbisogna di due?
PRIMA FILA TUTTI SBIRRI!
			
						"La matematica è la regina delle scienze e la teoria dei numeri è la regina della matematica" (Carl Friedrich Gauss)
Sensibilizzazione all'uso delle potenti Coordinate Cartesiane, possano seppellire per sempre le orride baricentriche corruttrici dei giovani: cur enim scribere tre numeri quando se ne abbisogna di due?
PRIMA FILA TUTTI SBIRRI!
- 
				pipotoninoster
 - Messaggi: 42
 - Iscritto il: 24 feb 2018, 14:42
 
Re: Triangoli pedali for dummies
Allora,
			
			
									
						
										
						Testo nascosto: 
Re: Triangoli pedali for dummies
Uhm credo che tu abbia qualche problema di configurazione se la dimostrazione è scritta così! Esplicita un po' meglio se usi angoli orientati (in particolare da quello che capisco hai messo $P$ a destra della bisettrice). Per il resto ci sta direi.
			
			
									
						
							"Una funzione generatrice è una corda da bucato usata per appendervi una successione numerica per metterla in mostra" (Herbert Wilf)
"La matematica è la regina delle scienze e la teoria dei numeri è la regina della matematica" (Carl Friedrich Gauss)
Sensibilizzazione all'uso delle potenti Coordinate Cartesiane, possano seppellire per sempre le orride baricentriche corruttrici dei giovani: cur enim scribere tre numeri quando se ne abbisogna di due?
PRIMA FILA TUTTI SBIRRI!
			
						"La matematica è la regina delle scienze e la teoria dei numeri è la regina della matematica" (Carl Friedrich Gauss)
Sensibilizzazione all'uso delle potenti Coordinate Cartesiane, possano seppellire per sempre le orride baricentriche corruttrici dei giovani: cur enim scribere tre numeri quando se ne abbisogna di due?
PRIMA FILA TUTTI SBIRRI!
- 
				pipotoninoster
 - Messaggi: 42
 - Iscritto il: 24 feb 2018, 14:42
 
Re: Triangoli pedali for dummies
Sì, hai ragione. Ci sono due configurazioni, a seconda che P sia a destra o a sinistra rispetto alla bisettrice. Comunque la dimostrazione è praticamente la stessa anche nell'altra configurazione.