Ragazzi mi potete dare una mano per determinare
il comportamento di queste 2 serie?:
1)
$ \sum_{n=1}^{+\infty}\frac{n}{n^2+\sqrt{n}+1}(\frac{n+1}{n+2})^n^{2} $
2)
$ \sum_{n=0}^{+\infty}\frac{1}{4^n}(\frac{n^2}{n^2+1})^n^3 $
Poeth ha scritto:che poi tende a 1 con n tendente a infinito
Veramente mi sembra che tenda a 0, con ordine di infinitesimo maggiore di 2; quindi, dato che l'altra parte della successione, all'infinito è un infinitesimo di ordine 1, se non sbaglio la serie converge.
poeth ... non funziona : altrimenti con lo stesso ragionamento avresti $ \displaystyle{\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=1} $ mentre quel limite è maggiore di 2 (fa e=2.7....).
Piuttosto ...
$ n/(n^2+\sqrt{n}+1)\sim 1/n $
$ \displaystyle{\left(1-\frac{1}{n+2}\right)^{-(n+2)(-n^2)/(n+2)}\sim e^{-n}} $
e quindi per confronto asintotico la serie ha lo stesso comportamento di $ \sum (ne^n)^{-1} $ che converge... a meno che io non sia completamente rincoglionito per il troppo studio.
Di cosa non sei convinto? Il mio ragionamento è stato lo stesso di EvaristeG (anche se non ho messo le formule perchè non so usare il latex ), quindi, a meno che lo studio non abbia nuociuto troppo a entrambi..
Se ciò che non ti torna è le parole "infinitesimo maggiore di 2", l'ho scritto per non sprecare troppe parole.
Allora, hai detto di essere d'accordo con quanto detto da EvaristeG, quindi concordi il fatto che la funzione, all'infinito sia circa uguale a e^(-n), ok? A questo punto, puoi concludere che essa tende a 0 in quanto e^(-n) = 1/e^n tende a 0 per n che tende a infinito (il rapporto tra 1 e qualcosa che tende a infinito, tende a 0).
Tutto chiaro ora?