IMO 2006, Problem 5
IMO 2006, Problem 5
Let $ P(x) $ be a polynomial of degree $ n > 1 $ with integer coefficients and let $ k $ be a positive integer. Consider the polynomial $ Q(x) = P(P( \cdots P(P(x)) \cdots )) $, where $ P $ occurs $ k $ times. Prove that there are at most $ n $ integers $ t $ such that $ Q(t) = t $.
[i:2epswnx1]già ambasciatore ufficiale di RM in Londra[/i:2epswnx1]
- - - - -
"Well, master, we're in a fix and no mistake."
- - - - -
"Well, master, we're in a fix and no mistake."