Problema ridicolmente semplice
Moderatore: tutor
prese 2 corde di un cerchio di lunghezza 4a e 6a e sapendo che la distanza fra le corde è a, che sono nella stessa metà del cerchio determinare la distanza della corda maggiore dal diametro.
<BR>
<BR>Questo è il problema...ma per risolverlo non non è ammesso usare il teorema di pitagora o i teoremi di Euclide (altrimenti è troppo semplice)<BR><BR>[ Questo Messaggio è stato Modificato da: Azarus il 12-12-2002 22:35 ]
<BR>
<BR>Questo è il problema...ma per risolverlo non non è ammesso usare il teorema di pitagora o i teoremi di Euclide (altrimenti è troppo semplice)<BR><BR>[ Questo Messaggio è stato Modificato da: Azarus il 12-12-2002 22:35 ]
mi vengono in mente alcune questioni in merito al titolo del post
<BR>
<BR>1) Se il problema è addirittura \"ridicolmente\" semplice, perchè lo hai postato? Per essere additato come uno che posta problemi ridicoli?
<BR>
<BR>2) Non mi pare che il solutore sia particolarmente incentivato. \"L\'ho risolto!\"
<BR>\"Cretino, era RIDICOLMENTE semplice\". Tu che ne dici?
<BR>
<BR>3) Non ti pare che detto titolo suoni un po\' come una giustificazione? Ovvero, \"io lo posto, ma non pensiate che sia così scarso da impegnarmi su questi problemi\"
<BR>
<BR>fine...
<BR>
<BR>1) Se il problema è addirittura \"ridicolmente\" semplice, perchè lo hai postato? Per essere additato come uno che posta problemi ridicoli?
<BR>
<BR>2) Non mi pare che il solutore sia particolarmente incentivato. \"L\'ho risolto!\"
<BR>\"Cretino, era RIDICOLMENTE semplice\". Tu che ne dici?
<BR>
<BR>3) Non ti pare che detto titolo suoni un po\' come una giustificazione? Ovvero, \"io lo posto, ma non pensiate che sia così scarso da impegnarmi su questi problemi\"
<BR>
<BR>fine...